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A polychromatic correlated-site percolation problem with 
possible relevance to the unusual behaviour of supercooled 
HzO and D20-F 
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Vauquelin, Paris 75231 
and 
Center for Polymer Studies11 and Department of Physics, Boston University, Boston, MA 
02215 USA 

Received 4 September 1979-1980. 

Abstract. We introduce a new polychromatic correlated-site percolation problem, which 
has the novel feature that the partitioning of the sites into different species arises from a 
purely random process-that of random bond occupancy. A particular case of this 
percolation problem is shown to be of possible relevance in providing a physical mechanism 
which may contribute to the unusual properties displayed by liquid H20 and D20 under 
conditions of supercooling below the melting temperature. 

1. Introduction 

The unusual behaviour of liquid HzO and its isotope DzO has been appreciated for 
some time. Recently, it has become increasingly clear-especially from the concerted 
efforts of Angell and co-workers-that under conditions of supercooling these two 
liquids display additional anomalous properties (see e.g. the recent review of Angell 
(1979)). For example, as the temperature is decreased below the melting temperature, 
TM, various static response functions such as the isothermal compressibility KT (T), 
constant-pressure specific heat Cp (T), and thermal expansivity a (T) become larger at 
an increasingly rapid rate, while the mass densityp (T) decreases rapidly (Angell 1979). 
In fact, Angell has postulated the existence of a thermodynamic singularity at a 
temperature T,, with T, = -45 "C for HzO at a pressure P of 1 atm. 

Thus far, no satisfactory physical mechanism underlying these unusual liquid 
phenomena has been found. However, information obtained on supercooled water 
provides an important testing ground for theories of water structure, since the super- 
cooled domain is expected to be a smooth extension to T < TM of the stable region. 

t A preliminary account of the present work was presented on 16 May 1979 in a seminar before the Sociiri 
Francaise de Physique. 
$ John Simon Guggenheim Memorial Fellow, 1979-1980. 
5 Equipe de Recherche Associte au CNRS. 
11 Supported by the NSF, ARO and AFOSR. 
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In this Letter we propose a correlated-site percolation model that is possibly of 
relevance in providing some insight into the behaviour of supercooled water. Cor- 
related-site percolation refers to the study of the connectivity of objects (‘sites’) whose 
state is not randomly determined as in ordinary random-site percolation. Previous 
studies of correlated-site percolation have concerned the connectivity of spins which 
are partitioned into two classes on the basis of an Ising or lattice-gas interaction 
(Muller-hmbhaar 1974, Coniglio 1975, Sykes and Gaunt 1976, Domb and Stoll 
1977, Klein et a1 1978). This system has been found to be particularly useful (Coniglio 
et a1 1979) in interpreting experimental data on polymer gelation (Tanaka et a1 19791, 
where the connectivity of the constituent polymer molecules is an essential physical 
feature. In contrast to these previous studies, the present model of correlated-site 
percolation has the novel feature that the partitioning of sites into classes arises from a 
purely random process, that of random bond occupancy. 

2. Definition of tbe model 

Percolation problems do not require for their definition a regular lattice, a fact that will 
prove to be of relevance if one uses percolation concepts for describing a fluid system. 
However, since the method whereby one extends lattice percolation to ‘continuum 
percolation’ has been studied elsewhere (e.g. Webman et a1 1975), we shall define the 
model directly for a lattice. 

Consider, then, a lattice consisting of N sites, each of which has z nearest- 
neighbours. Ignoringsurface effects, there are Nz/2 pairs of nearest-neighbour siteS. In 
the random bond percolation problem (see Stauffer 1979 and references therein), one 
randomly places bonds between a fraction p~ of these Nz/2 pairs, and then studies the 
properties of the resulting clusters of connected sites. 
Our work begins with the simple observation that each site can be considered to be a 

member of one of z + 1 different species, depending on whether 0, 1,2,. . . , z bonds 
emanate from that site. Since the bond distribution is random, it follows from the 
binomial theorem that the mole fraction of species j is simply 

Although the total number of sites belonging to each species is determined solely by the 
random variable PB, the connectivity properties are very different from those of pure 
percolation. For example, it is impossible for a species-z site to appear a8 a nearest- 
neighbour of a species-0 site. Similarly, if the z nearest-neighbours of a given site 
belong to species I, then the site itself must be species I t. 

Because of the fact that the positions of each species are correlated. the extensive 
results now available for random percolation are not applicable to this problem. Also 
not applicable are the results for the previously studied correlated-site model in which 
the correlation is introduced through an Kin or lattice-- interaction. Indeed, in 
Ising-correlated percolation, none of the 2 states of an N-site system has zero 
statistical weight, while in the problem introduced here, many states have zero weight as 
illustrated by the examples cited in the preceding paragraph. 

must be species-0; indeed, there is symmetry under the t r m r f o d n p e  + 1 -pe between t h e m  . 

8 

t Equally, one could state that d all the nearest-neighbours of a given site are species-0, then the site itself 
of 

species j and species z -1. 
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3. Bichromrtic percolation 

It is useful to discuss first the connectivity properties of a simple bichromatic percolation 
model in which we partition the sites into only two classes (i.e. we colour each site one of 
two possible colours). For example, suppose the members of class 1 (black sites) are the 
Nfz species-z sites, so that class 2 (white sites) would then be the remainingN(1 -fi) 
sites. We display in figure 1 the results of computer simulations for a square lattice of 

(a1 p = 0 - 5 0  B lbl  f ~ : 0 7 1  

Figure 1. Computer simulations of the bichromatic correlated-site percolation problem on 
a square lattice (z =4) with 256 sites and 512 bonds. The species-z sites (‘class 1’) are 
shown as solid circles, while the remaining sites (‘class 2’) are not shown. ( U )  fz = 0.0625 
( p ~  = 0.500, the critical threshold of the random bond percolation problem), ( b ) f 2  = 0.25 
( p ~  = 0.707), (c) f2 = 0.50 ( p ~  = 0.841), and ( d )  fz = 0.60 ( p ~  = 0.880). One striking 
feature of the site clusters formed by the members of class 1 is their far lower degree of 
ramification in comparison with the remarkably high degree of ramification (Domb 1976) 
and low fractal dimensionality (Stanley 1980) exhibited by clusters in random-site percola- 
tion. 
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( a )  Pe=0 .875  

Figure 2. Computer simulations as in figure 1, except that now we have omitted all the 
bonds except those between species-z sites. This permits one to visualise better the 
‘patches’ of four-bonded oxygens. Shown are N = 2500 sites and 2N = 5000 bonds. (a ) 

0.95 (fz = 0.815). Pictures such as these suggest that one might find relevant the considera- 
tion of the ‘hard core’ of a cluster-i.e. one might define a new class of sites to be those for 
which all four neighbours are species-z, and then consider the connectivity properties of this 
new class (e.g. Cohen and Grest 1979, Reich and Leath 1978)). 

p ~ = 0 . 8 7 5  (f, =0.586),  ( b )  p ~ = 0 . 9 0  (fz =0.656) ,  (c) p ~ = 0 . 9 2 5  (fz =0,732),  ( d )  P B =  
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N = 256 sites. For this lattice, f z  = p i  from equation (1). The bond percolation 
threshold is exactly 0.5, and hence the members of class 1 are largely isolated single sites 
unless one is well above the bond percolation threshold. Indeed, at p :  = 0.5, only 6% 
of the sites are membersof class 1 (figure la ) ,  while atpB = 0.7-where 99% of the sites 
belong to the ‘gel molecule’ or infinite cluster-only 25% of the sites belong to class 1 
(figure lb) .  It appears from preliminary Monte Carlo data (Blumberg, Shlifer and 
Stanley unpublished), that the critical-point exponents are the same for the correlated 
and the random site problem, though the threshold is somewhat lower for the correlated 
problem (f: ~ 0 . 5 6 ,  p :  =0.87), than for the random problem (pf =0.593). 

It is straightforward to obtain the exact solutibn of this bichromatic percolation 
problem for the special case of a one-dimensional (d = 1) lattice, using the same 
methods previously applied to the d = 1 random-site problem (e.g. Reynolds er al 1977 
and references therein). One finds, for example, that the total number of site clusters 
(normalised per site)- the analogue of the Gibbs potential in thermodynamics-is 

G ( f z  1 =fi (1 - f Y 2  ). ) 

If one selects a species-z site at random, and asks how many other sites belong to this 
particular cluster, one obtains the ‘mean cluster size’ 

Thus the black (species-z) sites percolate at f z  = 1, and the critical exponents are the 
same as for random percolation. 

Ford = 2 and 3 ,  we can compute the initial terms in low-density and high-density 
series expansions, though this is rather more difficult than in the random case. Also, the 
solution for the Cayley tree (‘d = 00’) is readily obtained. 

4. Polychromatic percolation 

The division of the z + 1 species into only two classes is somewhat arbitrary unless 
justified by the particular physical system at hand. The full connectivity problem 
involving all z + 1 species is an example of polychromatic percolation (Zallen 1977, 
Halley and Holcomb 1978). 

It is useful to consider the following line of reasoning. Suppose the sites correspond 
in some sense to oxygen atoms of a three-dimensional network with coordination 
number z = 4, and the bonds to hydrogen bonds between neighbouring pairs of oxygen 
atoms. Imagine also that the volume per oxygen atom, VI, depends on the number of 
bonds j emanating from the atom, with VO < VI C V’Z < V ,  < V4. Suppose we now 
partition the system into cells of characteristic dimension L, where L is, say, ten lattice 
spacings. With each cell we associate a ‘local’ densitypL, and we study the fluctuations 
of this local density from cell to cell. Since the positions of each species are correlated, 
and since the density is related to the site species, the densityflucruarions are correlated. 
That is, they are quite different in character from the density fluctuations in the 
corresponding random-site model consisting of the same five species, present in the 
same mole fractions. The ‘isothermal compressibility’ in this correlated-site model is 
enhanced, just as the isothermal compressibility in a van der Waals gas is enhanced 
relative to its value in an ideal gas. 
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5. Discussion: possible relevance to supercooled H20 and D20 

The preceding models of correlated-site percolation are of theoretical interest, for the 
reasons discussed above. However, since they were conceived in an attempt to seek a 
physical mechanism for the unusual properties of liquid HzO and D20, it is appropriate 
to conclude with some discussion of the way in which these models may be of relevance. 

A striking feature of liquid H20 and D20 is that they are characterised by extensive 
hydrogen bonding. In fact, Geiger et a1 (1979) have very recently demonstrated, from 
analysis of molecular dynamics results, that for any reasonable definition of a hydrogen 
bond?, HzO at 10°C is well above the bond percolation threshold. Hence the liquid 
consists of a single connected (hydrogen-bonded) network that is infinite in extent, as 
well as numerous finite networks. We shall refer to this infinite network as the ‘gel 
molecule’, recognising that this particular ‘gel’ differs in many respects from the more 
familiar and commonly occurring chemical gels (Gibbs et a1 1973). 

Let us next partition the oxygen atoms into five species, depending whether they are 
bonded to 0 , 1 , 2 , .  . . , 4  other oxygens, and let us focus on the ‘patches’ of the gel 
defined by connected regions of the four-bonded species. As T decreases. P B ( T )  
increases and so does the fractionf4(T) of species-4 molecules; in fact, a 1% increase in 
pB(T) leads to a 4% increase in f4(T). The ‘mean size of a patch’, S ,  is only of order 
10-10’ water molecules per patch in the supercooled region. 

X-ray scattering studies suggest that a rather considerable degree of short-range 
order is present in liquid water (Eisenberg and Kauzmann 1969). Moreover, there are 
unusually strong and narrow peaks in the oxygen-oxygen pair correlation function at 
the distances appropriate to the positions of the nearest-neighbour, second-neighbour, 
and even third-neighbour positions of crystalline ice Ih. Accordingly, when the 
temperature is sufficiently low that S - 10- lo’, we might reasonably expect that the 
local density of the patches is less than that of the surrounding gel molecule. Thus the 
patches give rise to spatial density fluctuations, whose magnitude also increases as T 
decreases. Since the positions of the species-4 molecules are correlated, the density 
fluctuations associated with the patches are also spatially correlated. 

To summarise thus far: as T decreases, the correlated patches increase in size, the 
overall mean density p r  decreases, and the density fluctuations associated with the 
patches, 

(3 1 ((P - ( P H 2 ) / ( P )  o= K*, 
increase. 

One immediate effect of the low-density patches of the gel is to give rise (i) to an 
anomalous negative contribution to the normally positive thermal expansivity and (ii) to 
an anomalous positive contribution to the isothermal compressibility KT. The following 
intuitive arguments may be useful in this regard: 

(i) Since 

-pa = (ap/aT)p, (4a 1 

+ It is conventional to introduce some ‘cut-off’ energy VHB and to state tHat two molecules are bonded if their 
interaction potential V ( r )  is such that V ( r )  < VHB and unbonded otherwise (see, e.g., Stillinger 1975 and 
references therein). Though this may seem to be imposing a ‘discrete’ symmetry upon a physical function, 
V ( r ) ,  that is not discrete, Hill (1956) and others have sought to justify this approximation by reasoning that 
two particles are unbonded when V ( r )  is less than their mutual kinetic energy (see, e.g., Coniglio er al 1979 
and Joanny 1979). 
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we can write, schematically, 

Now the density decreases as the fraction of hydrogen bonds increases, while p~ itself 
decreases with increasing temperature. Thus -(pol)A is the product of two negative 
factors and hence is positive, as observed experimentally. Moreover, it is clear that 
-(pol)A increases as T decreases. 

(ii) A similar schematic analysis applies to KT, for since 

PKT = (ap/aPh (5a 1 
we can write 

Now ~ B ( T ,  P) is a decreasing function of P and hence we conclude that K $  is positive 
and increases as T decreases. We can equally argue from (3) that KT is a positive and 
strongly increasing function, since the density fluctuations due to the patches are 
correlated. 

An analogous heuristic argument can be developed concerning the anomalous part, 
due to hydrogen bonding, of the constant-pressure specific heat, given by T-ICp = 
(aS/aT) cc ((H - (If))’), where S is the entropy and H is the enthalpy. 

Some of the more unusual properties of liquid H20 occur when it is subjected to 
modest pressure (up to 2 kbar). Since f4(T, P )  = @B(T, P))4, the correlated patches of 
lower mass density decrease in size. Thus one would expect that the pressurised system 
would have to be at a lower temperature in order to display the same hydrogen- 
bonding-caused anomalies, so that T,, KT (T, P), and the TMD (temperature of maxi- 
mum density) would all be expected to decrease with pressure. Indeed, all three 
phenomena are observed experimentally (Angel1 1979). 

A second way of reducing the connectivity of the patches is through the introduction 
of ‘network-breaking impurities’ (e.g. HzOZ) that do not form four strongly directional 
hydrogen bonds. One’s expectations are borne out by experimental data, which show 
marked decreases in both T, and KT. (To the best of our knowledge, extensive 
measurements of the TMD have not been carried out for water containing network- 
breaking impurities.) 

There is one ‘network-enhancing’ impurity, DzO, which might be expected to 
increase T,, KT, and the m D - a n d  all three phenomena are indeed observed. 

It is tempting to speculate on the possibility that T, is associated with the percolation 
of four-bonded molecules or the percolation of some subset of species-4 molecules (e.g. 
the percolation of those species4 molecules all of whose neighbours are also species-4). 
Indeed, the fact that both pressure and network-breaking impurities decrease T,, while 
DzO increases T,, is consistent with this possibility. Moreover, extrapolation to T = T, 
of experimental data on PT(T) strongly suggests that PT(T = Tp) <pice(T = 2’4, as 
would be predicted if f4(T = T,) # 1. 

The dynamic properties of water are characterised by the fact that hydrogen bonds 
are breaking and re-forming with a characteristic time T that is of the order of 
picoseconds at room temperature?. If the fraction fo(T, P )  = (1 - ~ B ( T ,  P))‘ of 

t Thus water does not support a static or low-frequency shear stress, unlike more commonplace gels. 
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unbonded water molecules makes a significant contribution to transport properties such 
as self-diffusion Ds(T, P )  (Pruppacher 1972, Gillen et a1 1972), then one would predict 
that fo( T, P )  and hence LIS( T, P )  (a) decrease as T is reduced, (b) increase with pressure 
and (c) decrease with D 2 0  dilution. All three phenomena are observed in water at low 
temperatures (Angell 1979). Conversely, to the extent that the highly structured local 
patches of the infinite connected network are responsible for the dramatic decrease in 
transport at low temperatures, then one predicts the same observed effects of (a) T, (b) P 
and (c) isotope substitution. 

In conclusion, we emphasise that this picture of water structure is highly oversim- 
plified, even if regarded as a zeroth-order approximation. However, there are 
numerous examples from recent work in phase transitions (e.g. the lattice-gas model) 
where a highly simplified model has in fact been sufficient to capture the essential 
physical mechanisms operative in a given phenomenon-and it is quite possible that the 
formation of correlated low-density connected patches of the hydrogen-bonded water 
network is a relevant mechanism in supercooled water. 
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